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Multiples of bytes

● kilobyte (KB) 10^3

● megabyte (MB) 10^6

● gigabyte (GB) 10^9

● terabyte (TB) 10^12

● petabyte (PB) 10^15

● exabyte (EB) 10^18

● zettabyte (ZB) 10^21

● yottabyte (YB) 10^24

Library of 
Congress
 ~ 10 PB

Actually 1024

1024^2

1024^3, etc.

1024 ^ 7

=1.2*10^24



  

Big Data
● “Big Data” = Exceeds in quantity, transfer 

speed, and/or data type variety. (3V's)

● Big Data worth $100B growing 10% per year

● As of June 2012, ~2.5 Exabytes (10^18) of 
business data are created DAILY

● Twitter receives 12TB of data a day

● Modern airline eng: 20TB/hr performance data

● NASA Sq. Kilometer Array: 100's of TB/sec =  
10's of Exabytes/day 

● Machines dominate data generation!!! 



  

Moving Data to the Cloud will make this transmission ramp even steeper!



  

What do you do ...?
(Tipping Points)

● When your data size exceeds what can be put 
on or handled by one machine?

● When your daily calculations take longer than 
a day?

● When your fancy compute systems have 
terrible ROA? E.g. 10% utilization

● When the Availability (= %time fully functional) 
of your computer system is unacceptable?



 



  

Cloud Computing

● Elastically and Independently provision:

● Compute resources

● Storage

● Network capacity: access and internal

● Resource Pooling and Load Balancing

● Only pay for what you use; includes 
transmission, maintenance, etc.

● Security and Reliability “Guaranteed”, but ...

● Vendors: Amazon, IBM, Google,  Rackspace, 
Microsoft, HP...



  

Cloud Computing
NIST Definitions

● IaaS = Infrastructure as a Service

● PaaS = Platform as a Service

● SaaS = Software as a service

●

●

● Problem:  These boundaries are blurring, and 
vendors are moving around.  Some vendors 
just don't fit any of these definitions.



  

Private and Internal Clouds

● Use open source infrastructure (Eucalyptus, 
OpenNebula, Nimbula, OpenStack, Platform, 
Enomaly, Deltacloud, KVM) 

● House computers on client site

● Increases asset utilization

● Market is growing!



  

Private Cloud Advantages

● Cost Reduction (viewed via charge-back)

● Efficiency (ROA) via virtualization, thin 
provisioning, snapshots, deduplication, backup

● Security and Regulatory Conformance

● Performance

● Base CPU, memory, speed to storage

● High IO/s

● Low latency

● High Availability 



  

Hybrid Cloud Advantages

● Increased Flexibility

● e.g. Intel will never put IP on a public cloud, but 
runs many applications there

● Excellent for load balancing when loads peak.

● Cost balancing

● Put peaky applications on public cloud

● Put controlled applications on private part

● Product development

● Public: non production development and testing

● Private: controlled production, private benefits



  

Public vs. Private Cloud Costs

● Public cloud vendors add profit margin

● Public cloud vendors benefit from economies of 
scale

● Equipment:  volume discounts

● Energy:  can negotiate discounts and can locate 
their data centers where energy costs are low and 
air conditioning isn't much needed.

● Public clouds get better equipment utilization 
from better load leveling.



  

Vendors of “Private Cloud in a Box”

● HP CloudSystem

● Dell Virtual Integrated Systems

● Cisco's Cloud Infrastructure

● IBM's CloudBurst

● BMC Cloud Lifecycle Management (sw only)

● Coud.com's CloudStack (sw only)

● Microsoft's Hyper-V (sw only)

● VMware's vCloud. (sw only)



  

New Cloud Vendors
What's the Message?

● Tier3 (mix)

● Nutanix (Storage)

● DataCore (Storage)

● CloudByte (Storage)

● ScaleIO (Storage) (*)

● Exablox (Storage)

● SolidFire (SSDs)

● Veeam (Backup)

● DataON (Box Cluster)

● SoftLayer (Iaas) (*)

● Savvis (IaaS) (*)

● Permabit (Tools)

● Pure (SSDs)

● Virsto (Storage)



  

Cloud Workload Elasticity

● Seasonal (retail, sports, tax, school)

● Batch (resource intensive: payroll, billing, HPC, 
order processing, backup)

● Mixed/complex/random (analytics, news, 
marketing)

● Rapid growth (exponential or hocky stick: 
difficult to provision)

● Transient (workload goes to zero at times: 
engineering, QA, training, disaster recovery)

● Non-conforming (doesn't fit billing models)



  

Low Latency Applications

● Trading, esp. arbitrage

● Info Week: “A 1 millisecond advantage in trading 
can be worth $100 Million per year.”

● broadcasting market data, publishing volatilities, 
reconfiguring connections and performing other 
time-critical tasks in trading

● Connecting news to trades.  Weather forecast 
in Brazil affect futures' price of coffee.

● Telecom voice and video quality

● Droop: handshake slow speed slowing down 
throughput on fiber channels.



  

Latency in Fiber Optics

● Light in a vacuum, 3.33 microseconds per km.

● Light in fiber, ~5.0 microseconds per km.

● LA to NYC 2462 mi (3961 km), but driving ~fiber 
is 2778 (4469 km) 

● Light LA to NYC = 22.3 milliseconds + relay 

● Light NYC to Bermuda = (1245km) 6.2 millisecs



  

Latency Requirements

● Trading Floor – current speeds

● Switch hardware

● Zeptonics, a Sydney-based financial technology 
firm, said clients had begun testing its trading 
switch, which routes messages inside high-speed 
data centers in 130 nanoseconds. 

● Cisco Nexus 3016 switch can get the last number 
or letter of a 1,024-character message onto a wire 
in 1.17 microseconds, or millionths of a second. 
The last number or letter of a 256-character 
message makes it onto the wire in 950 
nanoseconds, or billionths of a second. 



  

Moving to Another Cloud
Tough Problem

● Both need standard VM image formats

● Deal with different cloud APIs

● Moving data:  formats, frequency of exchange

● Networking differences:  DNS, load balancing, 
database configurations,

●

● IEEE standards may help … eventually 



  

Backup: Tape vs. D2D
● 2013: cost 1.5 TB LTO-5 tape about $50

● 2013: cost 4.0 TB disk about $80

● Even if cost(TB of disk) < cost(TB of tape) there are 
other expenses:

● Backup servers and Networking (more for disk)

● Storage Management, Backup Software, Labor, 
training, processes (replace for disk)

● RAID  makes disk more reliable than tape

● Increases cost

● Erasure codes equalize reliability

● Tape problems:  time, reliability, aging, etc.

● Tape utilization going down < 10%/year



  

Backup: Cloud?

● T1 line: 1.5Mbps = 127 Gb/day

● Moving 1TB = 1024*10 Gb takes 80.6 days

● High Speed Cable 10 Mbps = 847 Gb/day and 
moving 1TB takes 12.1 days.

● De-duplication and compression will help by 
factors 8:1 and 22:1.  Encryption will make 
things worse, however.



  

CRN's Coolest 100 Cloud Vendors
2013

● 20 Platform and Development (AppFog; Cloudera, 
Cloud Foundry; MapR, Hortonworks, RedHat...)

● 20 Storage and Data Center (Apple, Carbonite, Box, 
BitCasa, Dropbox, EMC, Hitachi, VMware...)

● 20 Infrastructure (Amazon, AT&T, Cisco, Dell, Eucalyptus, 
HP, Rackspace, IBM, Verizon, CA, Joyent, Nebula, Google...)

● 20 Applications & Software (Citrix, Google, Intuit, 
Microsoft, Oracle, Quest, Salesforce.com, SAP, Taleo...)

● 20 Security (CA, Check Point, IBM, McAfee, NTT, Symantec, 
Trend Micro, CipherCloud, ...)

And, …, many cool startups...



  

Cloud Consulting Ideas

● Key Problem:  Pro's and Con's of moving to the 
cloud. Cost Analysis. Private vs. Public.

● Choice of vendor(s) – match business models

● Are Availability requirements met?  99.9%?

● Avoiding platform lock-in (IEEE standards)

● Transition challenges and costs

● Future Big Data needs?  If yes, ask many 
questions, e.g. can you run on real rather than 
virtual machines?

● Performance Issues – IOPS, Latency, etc.



  

Data Center Terms for Big Data

● Rack mounted server (2-4 core 8GHz CPU, 16-32 
GB DRAM, 2-4 1-4TB Disks)

● Rack (40-80 servers, 1 40/10 GB/s Ethernet 

Switch)

● Cluster (30-40 Racks, 1 100/40 GB/s Switch)

● Data Center (100's of Clusters, large routers)

● Google has interesting patents + 1 data center 
description 

● Facebook has published their “green” data center 
specifications and designs 



  

Google's Server



  

Google Server Backside

Photo by Stephen Shankland of CNET



  

Google Server Details

● 2 CPUs

● 2 Hard Drives

● Custom 12v Power Supply 

● Low cost, peak capacity, high efficiency

● Gigabyte MB converts 12v to lower

● 12v Battery Backup (99.9% efficiency vs 95%)

● 8 sticks DRAM

● Ethernet, USB, and other ports

● 2U = 3.5” high



  



  



  

NSA Data Center, Bluffdale, Utah 



  

NSA's Bumblehive

● http://nsa.gov1.info/utah-data-center/

● 1-1.5 million square feet, $1.2B, ~5 zettabytes

● Water treatment, 60 diesel generators (3 day 
fuel supply) for 100% backup,  65 megawatts, 
1.5 million gal of water per day to cool.

● $20M/year to maintain

● Next datacenter in Ft. Meade, Md.



  

Facebook Data Center NC



  

Facebook Air Filter



  

Facebook Just Add Water



  

Facebook Rack of Servers
1.5U, no big UPS, no AC, tall heat 
sinks, no tools, lighter, cheaper



  

OpenCompute.org
(From Facebook's Specifications)

  
● Claims/Goals for a datacenter

● 38% more efficient

● 34% less expensive

● Open hardware designs (images.google.com)

● Rack (OU = 1.5U) 21” 

● Server

● Block storage

● Virtual IO

● Hardware management

● Certification



  

Tiered Storage

● Big Memory

● SSDs on PCIe bus (cache and perm)

● Local HDDs (mix PCIe, SAS, …)

● Net attached SSDs, HDDs  

● Local backup (no DR)

● Remote HDDs

● Remote tape



  

Google's 1AAA Container
(1160 servers, many/datacenter)



  

Raised Floors in Google's 
Containers



  

eBay Data/Compute Servers

● 1U with 64 bit CentOS (use Enterprise Red Hat 
on “main” servers)

● 2 quad core machines

● 48 GB RAM

● 1 Gig Ethernet for nodes

● 12-24 TB storage

● A rack has 38-42 servers

● Rack switch has uplink of 40Gb/s to the core 
switches



  



  

Google: Failures/Year/Cluster
● ~0.5 heat problems (pwr down most eq < 5 min, 2 day MTTR

● ~1 PDU failure (500-1000 machines gone, ~6 hrs MTTR

● ~1 rack move ( ~500-1000 machines down, ~6 hrs MTTR

● ~1 network rewiring (rolling ~5% down over 2 day span)

● ~20 rack failures (40-80 machines disappear, 1-6 hrs MTTR

● ~6 racks see 50% packet loss (?? MTTR)

● ~8 net maint failures (30 min connectivity loss MTTR)

● ~12 router reloads (2-3 min MTTR, web and clusters)

● ~3 router failures (web access 1 hr MTTR)

● ~1000 machine failures; ~many thousands disk failures

● Many minor, hw and sw problems; many Internet problems



  

Don't Yell; Deal With It!



  

Technology to address Big Data

● Distributed File System for very large files, 
distributed redundantly over many machines

● MapReduce computing environment provides 
distribution and fault tolerance

● Integrate your RDBMS!!!  The above 
technology will not solve traditional problems 
for which a RDBMS does well!!!

● Additional infrastructure (Lots new here!)



  

Hadoop Distributed File System
(Modeled after Google's GFS)

● Divide (big) file into large “chunks” 64-128MB.

● Replicate each chunk at least 3 times, storing 
each chunk as a linuxfile on a data server. 
Usually put 2 in the same rack.

● Optimize for reads and for record appends.

● Before every read, checksum the data.

● Maintain a master name server to keep track 
of metadata, incl. chunk locations, replicas,... 

● Clients cache metadata and read/write directly 
to the data servers.



  

Chunk/Data 
Server

Chunk/Data 
Server

Chunk/Data 
Server

Chunk/Data 
Server



  

HDFS/GFS Notes
● A client interacts with master name server only to 

get file metadata, which it caches.  Then it can 
interact directly with the data servers.

● Data servers update their metadata with the 
master every minute or so. (Heartbeat)

● Large chunk size reduces size of metadata, 
master-client interaction, and network overhead.

● Master name server is a single point of failure 
that is addressed with shadow servers and logs.

● Applications must optimize to the file system.



  

Critique of HDFS (or GFS)
● Single Name Node

● Single point of failure (Cloudera and MapR are 
addressing this with failover strategies)

● Namespace must fit in Name Node's memory: 
bounds the number of files (even if space exists on 
the data nodes)

● Replication strategy (3 copies) is expensive

● Storage cost

● Network bandwidth

● Inflexible striping strategy

● Heartbeat overhead



  

Goals to Distribute Applications

● Distribute the application across many 
machines

● Put the computations close to the data

● Near linear scaling n to N machines

● Handle failures (machine, storage, network)

● Monitor progress and deal with slow jobs



  

MapReduce
System to Process Big Files

● Prepare a Big File for input as (key1, value1) 
pairs into multiple Mapper jobs

● Map(key1, value1) generates intermediate (key2, 
value2) pairs and separates this output into R 
files for input into R parallel Reducers. 

● When all mappers done, the R reducers read and 
Sort their input files. 

● Reduce(key2, value2) does a data reduction 
processing stage. Output = R Big Files of (key3, 
value3) pairs (not sorted nor combined.)



 

MapReduce System

Job Master

Client



  

Immediate MR Benefits

● Automatic parallelization: No code changes to 
go from 10 to 1000 machines.

● Automatic load balancing

● Network and disk transfer optimizations

● Robust:  Machine and disk failover



  

Job/Task/Attempt Structure

● Job

● Multiple tasks:  mapper tasks, reducer tasks, .

● Attempt:  a restart of a task

● Word Count across 20,000 files is one job

● Quality Factor:  m% of data are processed.

● Speculative execution yields multiple attempts 
even if no failures.  Job tracker will kill those 
attempts that haven't finished.

● Task Tracker runs on slave nodes



  

Properties of MapReduce

● Can read from multiple file systems

● Can use indices

● Often MR is faster than even loading the data 
into a DBMS

● Often algorithms are difficult or impossible in 
SQL

● Address startup overhead by keeping worker 
processes alive waiting for next MR run.



  

Interesting Google Applications of 
MR

● Inverting {outgoing links} to {incoming links}

● Efficient support of Google Queries

● Stitching together overlapping satellite images 
for Google Earth

● Rendering map-tile images of road segments 
for Google Maps

● Over 15,000+ MR applications; 100,000+ MR 
jobs/day



 

MapReduce System

Job Master

Client



  

Sort on Key

● Map(key, value) = (key, value) identity fcn

● Reduce (key, value) = (key,value)  identity fcn 

● With multiple reducers, Map needs to have a 
partitioner class or a hash function so that k1 < 
 k2 implies hash(k1) < hash(k2), an “ordered 
hash function”



  

String Search

● Map (docName, contents) → (docName, 
Contents)

● If string In Contents Then emit(docName, Contents)

● Reduce(docName, Contents) = identity

● Note Google(string) does a little more, it emits 
the line or two that contains string, and it orders 
them by “goodness”



  

Sorted String Search

● Suppose you want to search for a string in a list 
of documents, but you want the output sorted.

● Map(docName, Contents) 

● Is the identity, except it hashes the input into R 
output files with d<d' implies hash(d) < hash(d') 

– emit(docName, Contents) to file(hash(docName)/R)

● Reduce(docName, Contents)

● If string In Contents Then emit(docName, Contents)

● Exercise: Make more efficient



  

Time Series

● A time series is a sequence (t1,v1), (t2,v2), … 
where t1 < t2 < … are points in time.

● Medical, financial, image. Smart Grid data, …

● Surprise:  genome data (text representation.)

● TS programming languages (EPS, APL, R, …)

● RDMS' put time series in a two column table; at 
best ok for small ts, but not for Big Data. Also 
SQL not so hot for ts.  Ditto spreadsheets.



  

Moving Averages – Smoothing 
Data

● A TS moving average over time T at time t is the 
average of the vi for ti in (t-T, t].  Typically one 
takes t to be one of the ti to guarantee at least 
one value to be averaged. Move t to repeat..

● Three day's average stock price for IBM (typically 
thousands of trades with actual quantity varying 
daily).  Usually computed daily.



  

Example: Daily 3-day Average
Stock Market Trades

● Multiple trade streams funneled to the 
mappers.  Map=Identity hashes symbol into R 
buckets; sort (time, symbol) in R reducers:

● Reduce(time, symbol, quantity, price)

● count3[*] := count2[*] := count1[*] := sum3[*] := 
sum2[*] := sum1[*] := day0 := 0

● Symbols3 := Symbols2 := Symbols1 : = { }

● Loop

– Input(time, symbol, quantity, price)



  

Example 3day moving average 
continued

– If EOF Or day(time) > day0 Then  - - flush what we've got 
● Begin For s In Symbols3 + Symbols2 + Symbols1 Do

– Output (s, day(time), (sum1[s]+sum2[s]+sum3[s])/(count1[s]
+count2[s]+count3[s]+1))

● If EOF Then Return
● day0 := day(time)
● count3[*] := count2[*]; count2[*] := count1[*]
● sum3[*] := sum2[*]; sum2[*] := sum1[*]
● sum1[*] := count1[*] := 0
● Symbols3 := Symbols2; Symbols2 := Symbols1
● Symbols1 := { } End

– Symbols1 += symbol  - - set addition

– sum1[symbol] += quantity*price

– count1[symbol] += quantity

– End Loop



  

Time Series
Lessons Learned

● Often the Mapper only hashes so that each 
reducer gets selected data.

● The sort is essential to the Reducer's algorithm.

● Standard programming idiom:  Watch for EOF 
or change in a parameter. If yes, output 
accumulated results and reset.

● OK to store locally modest amount of data.

● Watch for data scaling problems

● Here, a larger R = #Reducers helps

● Hadoop will schedule if R > # Machines avail.



  

Index a Document

● map(pageName, pageText)

● For word w In pageText

– Emit(w, pageName) to file(hash(w))

● Use ordered hash to output to reducers

● reduce(word, values)

● For each pageName in values Until word changes 
Do AddToOutputList(pageName)

● Emit(word, “: ”, pageNameList)



  

Example Word Index

B

Dog A
Cat A
Play A
Dig A

Dog B
Play B
Fun B
Girl B

Boy C
Cat C
Girl C
Play C
Fun C

Dog A
Cat A
Dig A
Dog B

Play A
Play B
Girl B
Fun B

Boy C
Cat C

Girl C
Play C
Fun C

Boy C
Cat A
Cat C
Dog A
Dog B
Dig A

Fun B
Fun C
Girl B
Girl C
Play A
Play B
Play C

Boy: C
Cat: A, C
Dog: A, B
Dig: A

Fun: B, C
Girl: B, C
Play: A, B, C

A

C



  

More Lessons Learned

● Sometimes significant work can be divided 
between Map and Reduce  (Word Count and 
Index parse for words; Select and Search 
evaluate the predicate.

● Sometimes local storage is needed (Index) be 
careful that this scales!

● Often self-identifying records are needed which 
need to be constructed early (Prepare).

● Next we'll see an example where multiple MR 
jobs are needed.



  

Multistage Pipeline
Term Frequency & Inverse Document 

Frequency
● t denotes term=word; d names a document in D

● tf(t,d) = number times t occurs in d

● wc(d) = number distinct terms in d

● ndocs(t,D) = number of docs in D containing t

● totdocs(D) = number of docs in D

● idf(t,D) = log(totdocs(D)/ ndocs(t,D))

● tfidf(t,d,D) = tf(t,d)*idf(t,D)

● ASSUME t is in some d In D 



  

tf*idf Job Pipeline

● Job 0  - compute N = totdocs(D)

● Job 1  - compute tf(t,d), pass N as a parameter

● Job 2  - compute wc(d) adding the tf(t,d) over t. Pass N,  
output all tf(t,d) under key “ktf”, and output all wc(d) under 
key “kwc”. 

● Job 3  - compute ndocs(t,D) adding for each d,  if tf(t,d)>0 
then 1 else 0. Pass N, output all tf(t,d) and wc(d) under 
key “ktf”, and output ndocs(t,D) under key “kndocs”.

● Job 4  - calculate, for each (t,d) both idf(t,D) = 
log(totdocs(D)/ndocs(t,D)) and tfidf(t,d,D) then 

output((t,d),(tf(i,d),wd(d),ndocs(t,D),idf(t,d), tfidf(t,d,D)))



  

Job 0 - totdocs(D)

● Prepare sets up many mappers and one reducer

● map(d,1) = (D,N)

● v := 0 

● Loop  read(d, n); v += 1; End Loop

● If EOF Then emit(D,v)

● reduce(X,v) = N - - =total docs in D = totdocs(D)

● N := 0

● Loop  read(X, v); N += v; End Loop

● If EOF Then emit(D,N)  - - single element output



  

Job 1 – Term Frequency in Doc

● Job 1:  Term/Word frequency and count

● map((d, contents, N) = ((t, d), 1, N)  

– - - parse for t implicitly; N = totdocs(D)

– - - hash so that each reducer gets all (t,d)'s 
together with no (t,d) splits across reducers

● reduce((t, d), v, N) = ((t, d), n, N)     - - n = tf(t,d)

– For each (t,d) add up all the v=1's to get n

– Emit((t,d), n, N)

– Note the output (t,d)'s are unique and inclusive



  

Job 2: Word Counts for d in D
● Map((t,d), n, N) = (d,(t,n,N))  --n = tf(t,d), N = |D|

● Hash the d's so that each reducer gets all the d values 
for the (t,d)

● Reduce(d,(t, n, N)) = (k, (t, d, tf(t,d), wc(d), m, N)) 

●   For each d, v := 0; Loop over t, 

–     k:= “ktf”; m:= If n>0 Then 1 Else 0

–     emit(k, (t, d, n, 0, m, N))  - - pass on the n=tf(t,d) info & m

–     v += n  - - n = tf(t,d) - - Note, no need to parse d again!

–     End Loop over t  - - now v=wc(d)

– k:= “kwc”

– emit(k, (“”,d, 0, v, 0, N))

– End Loop on d



  

Job 3 – ndocs(t,D)
● Pass each reducer output file back to a job3 mapper

● map(k,(t, d, n, w, m, N)) = identity

   - -if k= “ktf”,  n=tf(t,d) and m=1 if tf(t,d)>0 else 0 & w = wc(d) if k = “kwc” 
& N = totdocs(D)

● Again hash d so that no d's are split across reducers, and sort so that 
“kwc” is before “ktf” and all d's are together.

● reduce(k, (t, d, n, w, m, N)) = (k, (t,d,n,w,v,N)) 

● If k = “kwc” Then 

– wc := w

– Skip to next record - - wc=wc(d)



  

Job 3 continued = ndocs(t,D)

● If k = “ktf” Then For each t,  v:=0; Loop over d

● emit(k, (t,d,n,wc,0,N))  - - Note wc is folded in!
● v += m - - add all the m's to get ndocs(t,D)
● End Loop over d

– k := “kndocs”

– emit(k, (t, “”, 0, 0, v, N))  - - v = ndocs(t,D)

– End For each t



  

Job 4 – Calculate idf(t,D) and 
tf*idf(t,d,D)

● Map(k,(t,d,n,w,v,N)) = identity

● Hash d's so the (t,d)'s aren't split across reducers; 
sort so that “kndocs” is first and all d's  are together.

● Reduce(k,(t,d,n,w,v,N))

● Loop 

●   Read(k, (t,d,n,w,v,N)

●   If k = “kndocs” Then ndocs:=v; Skip - - ndocs(t,D)

●   If k = “ktf” Then tf := n; idf := log(N/ndocs); tfidf := 
tf*idf  - - tf(t,d), idf(t,D), ndocs(t,D), tfidf(t,d,D)

●   Output ((t, d), (tf,idf,wc,ndocs,N,tfidf)

● End Loop



  

Summary TF-IDF

● Several small jobs add up to a full algorithm

● Lots of code reuse is possible – stock classes 
exist for aggregation, identity, etc.  Standard 
idioms for code.

● Job 0 is not necessary if card(D) is known

● Needed self-identifying records

● There are other ways to do tf*idf, e.g. using 
external files.

● Same techniques to iterate and converge.



  

More Topics

● The impact of SSDs 

● The death of RAID? 

● Small v. disks

● Erasure codes

● Backup

● Compression, deduplications

● Tape?

● Virtual Networks

● Virtual Datacenters



  

Thank You!

● Questions?

●

●

● Gayn Winters, Ph.D.

● gaynwinters@ieee.org

● 714-366-4296


